Overlapping Community Detection in Temporal Text Networks
ثبت نشده
چکیده
Network is a powerful language to represent relational data. One way to understand network is to analyze groups of nodes which share same properties or functions. The task of discovering such groups is known as community detection. Generally, two types of information can be utilized to fulfill this task, i.e., the link structures and the node attributes. The temporal text network is a special kind of network that contains both sources of information. Typical representatives include online blog networks, the World Wide Web (WWW) and academic citation networks.In this paper, we study the problem of overlapping community detection in temporal text network. By examining 32 large temporal text networks, we find a lot of edges connecting two nodes with no common community and discover that nodes in the same community share similar textual contents. This scenario cannot be quantitatively modeled by practically all existing community detection methods. Motivated by these empirical observations, we propose MAGIC (Model Affiliation Graph with Interacting Communities), a generative model which captures community interactions and considers the information from both link structures and node attributes. Our experiments on three categories of datasets show that MAGIC achieves obvious improvements over 4 state-of-theart methods in terms of 4 widely-used metrics. CCS Concepts •Data Mining → Graph Mining; •Networks → Network Clustering;
منابع مشابه
Overlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملAutonomous overlapping community detection in temporal networks: A dynamic Bayesian nonnegative matrix factorization approach
A wide variety of natural or artificial systems can be modeled as time-varying or temporal networks. To understand the structural and functional properties of these time-varying networked systems, it is desirable to detect and analyze the evolving community structure. In temporal networks, the identified communities should reflect the current snapshot network, and at the same time be similar to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016